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Abstract 

A three-parameter generalization of the Tsallis entropy based on the properties of the power 

functions and Weyl fractional calculus like extension of quantum calculus, are introduced.  

The generalization of the Shannon-Khinchin axioms corresponding to the fractional Tsallis 

entropy is verified and proposed.  These axioms uniquely characterize new entropy function. 

For a certain sets of parameter values satisfied the second and third law of thermodynamics, 

the Lesche and thermodynamic stability criteria.  
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1. Introduction 

Statistical entropy is a measure of the number of possibilities available to a system, and 

assume its minimally zero when the system is in a given state and maximal value when a 

system can be in a number of micro states randomly with equal probability, with no 

uncertainty in its description. Over the past three decades, there has been a lot of interest in 

generalizing the Shannon entropy and exploring the consequences of applying these new 

concepts in several scientific fields1-12. For the new entropy functions are considered 

properties characteristic for the Shanon entropy: non-negativity, additivity, monotonicity and 

continuity, extensivity, convexity, stability, and, particularly, whether they conform to the 

second and third law of thermodynamics13-14. As a consequence of the mentioned, central 

tendency to the development of the statistical mechanics of systems is the definition of the 

free energy.  The existence of this function is the result of normalization of the probability 

distribution function, which in turn controls the behavior of all the macroscopic properties of 

the ensemble. The majority entropy functions depend on an additional parameter q and 

become the Shannon entropy function when this parameter takes the value q = 1. These 

generalizations mostly could be non-extensive and opening the possibility for applications to 

systems with long range interactions between meso or macroscopic parts of system and non-

additivity of energies also on meso and macroscopic scales.  

Fractional calculus (FC) is a field of mathematic study that grows out of the traditional 

definitions of the calculus integral and derivative operators in much the same way fractional 

mailto:m.amara@academy.edu.ly


International Journal of Applied Mathematics 

Volume 38 No. 8s, 2025 

ISSN: 1311-1728 (printed version); ISSN: 1314-8060 (on-line version) 

 

1186 
Received: August 10 2025 

exponents is an outgrowth of exponents with integer value. FC is a generalization of ordinary 

differentiation and integration to arbitrary (non-integer) order. Precise mathematical 

formulation of basic fractional calculus or its many applications are given in Refs. 15-17.  

Quantum  q-calculus presented in Ref. 18, having a close connection with commutativity 

relations in the Lie algebras and is particularly useful for the quantum groups.  Possible 

applications q-calculus are in geometry over finite fields.   

In papers known expressions for entropy inspired in the properties of basic FC11-13 .Order of 

derivative operators in FC is a strong connected to entropic parameter. In the statistical 

mechanics, the main motivation to propose new entropies to be able to describe phenomena 

that lie outside the scope of the Boltzmann–Gibbs (BG) formalism.  

In the present paper, introduced a new entropy function based on the properties on the power 

functions, FC and q-calculus.  For that purpose is notice that the Shafee entropy7 and the 

Ubriaco entropy11 can natural generalize into two-parameter concept. After that, considers 

properties of expansion mentioned two-parameter entropy in the sense of the Tsallis entropy.   

Letter is organized as follows. After the introduction in section 1, in next section introduced 

some necessary definitions and mathematical preliminaries of FC. In section 3, derived the 

new entropy functions. There is demonstrated that they are related to the new nonlinear 

operator of fractional derivative. In section 4, described some properties of this entropies. 

Finally, section 5 outlines the main conclusions.  

2. Preliminaries and notations 

In the literature exists various definitions of fractional order derivatives.  One of these 

definitions of a fractional order derivative is the Weyl definition.  

The Weyl fractional derivative order q is defined as15,17  

  

( )( )
( )

( )

( )
1

'1
: ' , 1 , .

'

tn
q

W t n q n

f td
D f t dt n q n n

n q dt t t
+ −

−

=    −     
 − −

 N                  (1) 

For the Weyl fractional derivative valid relation11 
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where   q > 0 and  λ > 0. This derivative is a linear operator.  

3. Establishing to the new entropy concept 

The Tsallis entropy observation can be defined from the equation1,9,19  
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opened the possibility to define new entropy functions20 . Where the operator Dt
q is called the 

Jackson q-derivative21 defined as  
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Parameter q have a positive real values and sometimes called entropic index, pi is the 

probability distribution function ( pdf). Eq. (4) usually written in the form22 

                                                    ( )
1
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Tq ii
S p

q
= −

−
                                                  (5) 

In the limit q → 1 the Shanon entropy recovered. Earlier to Tsallis entropy, was introduced 

an additive entropy - Rényi entropy. Between first or true entropies, the Hartley and Shannon 

entropies, both Rényi and Tsallis entropies are interpolation formulas.  They are connected by 

the equation19 ( ) ( )  11exp1 =−−+− RqTq SqSq , where SRq  is the Rényi entropy. Sometimes, these 

parametric form of entropies are criticized on the ground that they are not true entropies, and 

therefore the same is true for their generalizations.  The basic reason is that they depend on a 

parameter, which is different for different systems.  After these, many physically different 

definitions of entropy can be given, and what makes up a “physically relevant entropy" is 

often subject to a lot heated discussions. As opposed to previous one, exists is a conception 

that the BG statistics cannot yield the long tail distribution. This is the justification for the 

intensive research of nonextensive and other entropies23,24,25.  

Ubriaco11 proposed entropy functions based on FC which has a physical sense13    
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In another form Eq. (6) can be written as follows 
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The new and direct generalization of the Eq. (6) is 
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That the entropy becomes the function   
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If q1 = q and q2 = 1, then Eq. (9) described the Shafee entropy function7. Entropy (9) is 

examined in detail in Ref. 26. This entropy is a concave function for positive q1 and q2.   The 

Shafee entropy functions in Ref. 7 defined by mixing probability ( )
q

ii
pqM −= 1 : 

( )
dq

dM
qS −= . M(q) represents, in the cell-letter model, the measure of the disorder, introduced 

by increasing the cell scale from q = 1 + ∆q to q = 1 or q > 1 (∆q > -1). The introduction of 

fractional values of cell numbers can be taken in the same spirit as defining the fractal 

(Hausdorff) dimensions of dynamical attractors and in complex systems27,28. Therefore, with 

the above, entropy (9) can be considered in the Ref. 26 as a fractional entropy in a fractal 

phase space in which the parameter q1 comes from the fractal nature and the parameter q2 is 

from the fractional aspect. However, as was noted on the basis of (8), Eq. (9) is completely 
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derived from the FC. This means that the t-axis describes fractional values of cell numbers. If 

it is accepted limit such in Eq. (8) , but in  Eqs. (3) and  (4), can be written 
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Previous equation gives an idea that is based Tsallis entropy writings such a function that 

when q  → 1 will be (9). The simplest option for generalizations in this sense, due to using 

the power functions under the sum in Eq. (10), is appropriate degree expression of its right 

side. This idea is based to this circumstance that the concept of usage some power functions 

for the entropy first time directly used in the Ref. 7.  Should also noted that the Tsallis and 

Rényi entropies based on the profities of the power functions. Then explicitly obtained three 

parametric entropy function 
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For q1=q2=1, (13) describe the Tsallis entropy STq and for q1=q2 ≠ 1, two-parameter entropy is 

the Ubriaco like case. Taking into account the Eq. (3), introduced a new fractional q2 - Weyl 

like, q - derivative 
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If q2=0, then, by definition, ( ) =:0 tfDt
qW . For q2=1 then (14) becomes (4). If perform 

substitution t
q

t
→

2

in Eq. (14), obtained the relation ( )( ) 2qt
q tfD . Easy observed that the 

fractional q2 - Weyl like, q - derivative is not a linear operator. Both derivatives, fractional 

and q-derivative, have their physical meaning and the combination thereof (14) may useful.   
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However, the main conclusion is that for the entropy (12) dominant influence does the  

Tsallis entropy.  

4.  Entropy and its axiomatic characterization 

For the Tsallis entropy exists various experimental verifications and applications1,14. The 

Ubriaco9,29, Shafee27,28 and entropies gives by Eq. (9) haven't so much experimentally 

verifications.  Still, assumed that entropy (12) discussed here may be a strong candidate in 

describing complex system.  

Below, presented the three-parameter generalization of the Shannon-Khinchin axioms in Abe 

sense1,30. Let Δn be an n-dimensional simplex  

                                     ( )1
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For Tsallis entropy, let pA  Δn
A and  pB  Δn

B be two probability distributions for two 

subsystems A and B respectively. Then the entropy of composite system is  

                                   ( )    , 1 | .Tq Tq Tq Tq TqS A B S A S B q S A S B A= + + −                    (16) 

If A and B is independent,  hence    BSABS TqTq =| . The Tsallis entropy is a pseudo-additive. 

Three-parameter entropy (12) satisfies the following axioms.  

(i) Continuity. The entropy 
21,; qqqS is continuous in Δn . Previous restrictions are the result of 

the basic principles of thermodynamics which will later prove. 

(ii) Maximality. For any nN , then  valid 
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(iii) Expansibility. Consider  
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(iv) Generalized Shannon Additivity. Consider  
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including Eq. (16).  

If the above four requirements are hold, entropy (12) defined in a unique way. All of these 

properties easy derived from characteristics of Tsallis entropy1,30 and Eq. (13).   

It is essential, however, to put the fundamental restrictions on values of the parameters q, q1 

and q2.  First, obvious that  pS qqq 21 ,;  is a concave function because   ( )
1

2

21,;

−q
qqq pS  is a concave 

function  due (13) (the Tsallis entropy  is a concave function for positive q). It is clear that 

they are exact relations 01
21 −qqq  and 01

21 −qq . Maximum of function (12) established  for 
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bounded functions and, consequently, for 02 q , they have  constrained values.  

 

Fig. 1. Plots of the function versus p  for: a) q=1.6, q1=0.8, q2=0.6;  b) 

q=1.6,q1=0.55,q2=0.5; c) q=1.6, q1=0.303, q2=0.3. 

 

The functions ( )pss qqiq 21 ,;=  which illustrate  in Fig. 1, are typical positive concave functions. 

If considered the continuum case n→W ≥1, then Eq.  (17) produced the relation 
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For the Eq. (20) can be concluded that for 0 < q ≤ 1 and 0 < qq1 /q2≤ 1or q ≥ 1 and q1 /q2≤ 1,  

21 ,; qqqS  is a nondecreasing concave function of W which regular diverges ( “as a power law”) 

if W → ∞ (see Fig. 2) as similar function for Tsallis entropy if q < 1 .  In opposite case, for 0 

< q ≤ 1 and 0 < q1 /q2≤ 1or q ≥ 1 and qq1 /q2≤ 1,  
21 ,; qqqS have a horizontal asimptote, as 

similar function for Tsallis entropy if q > 1 (see Fig. 2). The concavity of the entropic 

function illustrated  through a set of plots shown above in Fig. 1.  The aforementioned 

conclusions will be used in the next section.  
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Fig. 2. Plots of the function  WS qqq /1
21 ,; versus W  for: a) q=1.6, q1=0.8, q2=0.6; b) q=1.6, 

q1=0.55, q2=0.5; c) q=1.6, q1=0.303, q2=0.3. 

 

In Fig. 2, presented plots of S[1/W] for some values of q, q1, q2 (the generalized pdf). Clearly 

in the limit q,q1, q2 →  1  the Boltzmann relation S = ln W is recovered.  

5. Thermodynamic properties 

The study of the stability properties of entropy functions is one of the important issues that 

need to pay attention to many works. In the framework of the above, Lesche, in a pioneering 

articles31,32, proposed a criterion to study the stability of the Rénya entropy function and BG 

entropy. For this criterion the motivation can be formulated as follows. The basic motive for 

existence of this type of stability is to check whether existence of quantitative sensitivity to 

changes when the probability assignments p on a set of n microstates is perturbed by an 

infinitesimal amount δp (i.e. experimental robustness). To some generalizations of the 

Shannon entropy, this criteria has already been applied31,32-36. For Tsallis entropy is shown 

that Leshe stable37and the same holds for  pS qqq 21 ,; due to  Eq. (13). Such is the entropy of the 

given in Eq. (9)26. In the case of thermodynamic stability, features consideration is different. 

Condition in thermodynamic stability of system in the BG formalism, as is well known, is 

equivalent to the concavity of the entropy: 0
2

2






E

S
, E is the internal energy of the ensemble 

per constituent. It should be noted that in the case of a non-additive entropies, the property of 

concavity does not imply thermodynamic stability35.  

The Tsallis entropy is the thermodynamic stable for 0 < q < 138, until entropy functions given 

by Eq. (9) are stable in this way for 0 < q1 < 1 and q2 > log2 q1 or q1 > 0 and q2 <log2 q1 
26.  

Generally considered, the Tsallis statistics, by investigating the second law of 

thermodynamics in the context of kinetic theory, has been studied in the classical39, the 

relativistic40 , and also in the quantum-mechanical regimes41. Another study discussed for the 

generalized relative entropy the convexity property in the quantum regime42, leading for the 

Tsallis entropy to the constraint 0 < q ≤ 2. Putting together results for third law of 
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thermodynamics reported in14 q ≥ 1, may conclude that the Tsallis entropy STq is compatible 

with all the laws of thermodynamics only for q in the range 1 ≤  q ≤ 2.   

Entropy  pS qqq 21 ,; therefore compatible with all the laws of thermodynamics, due to (13),  if 

21 1
21  −qqq  or 21 1

21  −qq .  

Then, for 0 < q ≤ 1 and 0 < qq1 /q2≤ 1or q ≥ 1 and q1 /q2≤ 1, concluding relations are  

 

                                                                                              

                                                                                                 (21a)  

                                                                                                                                                                                                              (21b) 

             

and q2 ≤ 2. Relations (21a) and (21b) represents some of the  main results of this paper. In the 

cases if for 0 < q ≤ 1 and 0 < q1 /q2≤ 1or q ≥ 1 and qq1 /q2≤ 1, results are 11
21 =−qq  and q = 1. 

Previously mentioned inequalities represent physical limitations to the entropy function given 

in Eq. (9) and Ref.26.   If 11
21 =−qqq  or 11

21 =−qq then                  presents a two-parameter  

Tsallis  like entropies.  

Based on the statistical-thermodynamic principles, the probability distributions can be 

obtained by maximizing the corresponding entropy function  pS qqq 21 ,; (see Refs. 7, 26 for 

more details), under the constraints Σi pi = 1 and  Σi pi εi = E (εi is the i-th state energy), 

subject to constraint equation 
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where α and β are the Lagrange multipliers associated with the normalization of the pdf’s pi 

and the conservation of energy, such that setting 021,;
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21 ,; , where C is the constant of integration. Hence gets 

relations for the pdf’s  
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Function A=-α/β called  the Helmholtz free energy. For Eq. (24) assumed that the function 

can be inverted. Generally, do not have a closed form for pi solution for arbitrary q, q1 and q2. 
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But one should be able to obtain the pi for given q, q1 and q2 either numerically or 

analytically.  

 

Fig. 3. Plots of the unnormalized pdf pi of the quantity   0+= iO    for: a) q=1.6, q1=0.8, 

q2=0.6; b) q=1.6, q1=0.55, q2=0.5; c) q=1.6, q1=0.303, q2=0.3. 

 

In Fig. 3 presents, for some values of q, q1 and  q2 numerically determined plots of relation 

(23) using the variable .iO  += In all figures the specific values of q, q1 and  q2 should 

come from real physical systems.  

5. Conclusions 

This paper presented a generalizations of the concept of entropy inspired in the properties 

on the power functions, FC and q-calculus. Within context of new calculus, defined a new 

entropy functions. This new entropies is concave, positive definite, non-additive, for given set 

of values of three parameters satisfies generalization of the Shannon-Khinchin axioms, 

stability criteria and the second and third law of thermodynamics. In the description of its 

properties dominate characteristics on the Tsallis entropy.  

The relationship between fractional derivatives and entropy functions are only recently being 

considered. In the framework of the above are particularly interesting other fractional or 

different modification of Jackson q-derivative except one described in Ref. 19 or this article. 

Accordingly, it is very important to mention that Makhaldiani43 presents  his version of the 

fractional q-derivative 

          ( ) ( ) ( )( ) ( ) ( )
( ) ( )
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1 1
: 1 1

!
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n
D f t q t f t f q x
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
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in the context of algebra-analytic quantization and field theory. The fractional derivative 

defined by Eq. (26) is a very different from those introduced by (14). The Makhaldiani 

fractional q-derivative, as opposed to the operator (14), is, by definition, linear operator. His 
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action on the functions, although he probably represents the better candidate for new entropy, 

however, is more complicated. 

Towards this end, establishing a possible connection between these two operators, including 

applicability to the description of the concept of entropy of the last defined operator (26) or 

similar, could be the subject of future research.  
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