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Abstract

A three-parameter generalization of the Tsallis entropy based on the properties of the power
functions and Weyl fractional calculus like extension of quantum calculus, are introduced.
The generalization of the Shannon-Khinchin axioms corresponding to the fractional Tsallis
entropy is verified and proposed. These axioms uniquely characterize new entropy function.
For a certain sets of parameter values satisfied the second and third law of thermodynamics,
the Lesche and thermodynamic stability criteria.
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1. Introduction

Statistical entropy is a measure of the number of possibilities available to a system, and
assume its minimally zero when the system is in a given state and maximal value when a
system can be in a number of micro states randomly with equal probability, with no
uncertainty in its description. Over the past three decades, there has been a lot of interest in
generalizing the Shannon entropy and exploring the consequences of applying these new
concepts in several scientific fields''>. For the new entropy functions are considered
properties characteristic for the Shanon entropy: non-negativity, additivity, monotonicity and
continuity, extensivity, convexity, stability, and, particularly, whether they conform to the
second and third law of thermodynamics'*'*. As a consequence of the mentioned, central
tendency to the development of the statistical mechanics of systems is the definition of the
free energy. The existence of this function is the result of normalization of the probability
distribution function, which in turn controls the behavior of all the macroscopic properties of
the ensemble. The majority entropy functions depend on an additional parameter g and
become the Shannon entropy function when this parameter takes the value ¢ = 1. These
generalizations mostly could be non-extensive and opening the possibility for applications to
systems with long range interactions between meso or macroscopic parts of system and non-
additivity of energies also on meso and macroscopic scales.

Fractional calculus (FC) 1s a field of mathematic study that grows out of the traditional
definitions of the calculus integral and derivative operators in much the same way fractional
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exponents is an outgrowth of exponents with integer value. FC is a generalization of ordinary
differentiation and integration to arbitrary (non-integer) order. Precise mathematical
formulation of basic fractional calculus or its many applications are given in Refs. 15-17.
Quantum g-calculus presented in Ref. 18, having a close connection with commutativity
relations in the Lie algebras and is particularly useful for the quantum groups. Possible
applications g-calculus are in geometry over finite fields.

In papers known expressions for entropy inspired in the properties of basic FC!'!"!3 .Order of
derivative operators in FC is a strong connected to entropic parameter. In the statistical
mechanics, the main motivation to propose new entropies to be able to describe phenomena
that lie outside the scope of the Boltzmann—Gibbs (BG) formalism.

In the present paper, introduced a new entropy function based on the properties on the power
functions, FC and g-calculus. For that purpose is notice that the Shafee entropy’ and the
Ubriaco entropy'! can natural generalize into two-parameter concept. After that, considers
properties of expansion mentioned two-parameter entropy in the sense of the Tsallis entropy.

Letter is organized as follows. After the introduction in section 1, in next section introduced
some necessary definitions and mathematical preliminaries of FC. In section 3, derived the
new entropy functions. There is demonstrated that they are related to the new nonlinear
operator of fractional derivative. In section 4, described some properties of this entropies.
Finally, section 5 outlines the main conclusions.

2. Preliminaries and notations
In the literature exists various definitions of fractional order derivatives. One of these

definitions of a fractional order derivative is the Weyl definition.

The Weyl fractional derivative order g is defined as'>!”

N ye e L 4 S
(WDt f)(t)_ F(I’l—q) dr" 7oodt (t_t,)qﬂ—n’

n—-l<g<n,neN. (1)

For the Weyl fractional derivative valid relation'!
DI = 20, 2)
where ¢ >0 and A > 0. This derivative is a linear operator.

3. Establishing to the new entropy concept

The Tsallis entropy observation can be defined from the equation'!
Sy, =limD; 3" p’", €)

opened the possibility to define new entropy functions?® . Where the operator D, is called the
Jackson g-derivative?! defined as

DLf ()= tw @)
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Parameter g have a positive real values and sometimes called entropic index, p; is the
probability distribution function ( pdf). Eq. (4) usually written in the form??

= (T ) 5)

In the limit ¢ — 1 the Shanon entropy recovered. Earlier to Tsallis entropy, was introduced
an additive entropy - Rényi entropy. Between first or true entropies, the Hartley and Shannon
entropies, both Rényi and Tsallis entropies are interpolation formulas. They are connected by
the equation'® (¢-1)S;, +exp|-(q—1)Sg, |=1, where Sk, is the Rényi entropy. Sometimes, these

parametric form of entropies are criticized on the ground that they are not true entropies, and
therefore the same is true for their generalizations. The basic reason is that they depend on a
parameter, which is different for different systems. After these, many physically different
definitions of entropy can be given, and what makes up a “physically relevant entropy" is
often subject to a lot heated discussions. As opposed to previous one, exists is a conception
that the BG statistics cannot yield the long tail distribution. This is the justification for the
intensive research of nonextensive and other entropies®*>*3,

Ubriaco!! proposed entropy functions based on FC which has a physical sense!?

S :=lim D"Ze g e(0,0). (6)

t—>-1

In another form Eq. (6) can be written as follows

S, Zp, (-n(p,))’ (7)
The new and direct generalization of the Eq. (6) is
S, 4 = tllm D Ze’t e (8)

That the entropy becomes the function
Zp (-In(p,))", 4.9, >0. )

If g = q and ¢q> = 1, then Eq. (9) described the Shafee entropy function’. Entropy (9) is
examined in detail in Ref. 26. This entropy is a concave function for positive ¢g; and g>. The

Shafee entropy functions in Ref. 7 defined by mixing probability M(q)= Z P

S(q)= —‘Z—M. M(q) represents, in the cell-letter model, the measure of the disorder, introduced
q

by increasing the cell scale fromg=1+Agtog=1org>1 (Ag > -1). The introduction of
fractional values of cell numbers can be taken in the same spirit as defining the fractal
(Hausdorff) dimensions of dynamical attractors and in complex systems>’*®. Therefore, with
the above, entropy (9) can be considered in the Ref. 26 as a fractional entropy in a fractal
phase space in which the parameter g; comes from the fractal nature and the parameter ¢> is
from the fractional aspect. However, as was noted on the basis of (8), Eq. (9) is completely
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derived from the FC. This means that the #-axis describes fractional values of cell numbers. If
it is accepted limit such in Eq. (8) , but in Egs. (3) and (4), can be written

X (P

A 10
o q, (1 - Q) ( )
Then
lims,, = > p!-In(p,). (11)

Previous equation gives an idea that is based Tsallis entropy writings such a function that
when ¢ — 1 will be (9). The simplest option for generalizations in this sense, due to using
the power functions under the sum in Eq. (10), is appropriate degree expression of its right
side. This idea is based to this circumstance that the concept of usage some power functions
for the entropy first time directly used in the Ref. 7. Should also noted that the Tsallis and
Rényi entropies based on the profities of the power functions. Then explicitly obtained three
parametric entropy function

aa @ 1
Z[[pith _p[QZ j
a,(1-9)
q,

(12)

Sl{?‘{la‘fz [p] =

In the previous equation, S, . [p]=> ¢, . ()= 4., (p) is a continuous positive

i

functions, which is valid

5] 1_ —1 . _1 92
Sq;qpqz [p] = {%J ([quqquz\} Srﬂ [p] +(qllqz_—qJ STﬂ [p]} > (13)

For g1=q>=1, (13) describe the Tsallis entropy Sz, and for g;/=q> # 1, two-parameter entropy is
the Ubriaco like case. Taking into account the Eq. (3), introduced a new fractional ¢g>- Weyl

like, g - derivative
/)
021 g, %0, (14)

If ¢>=0, then, by definition, ,’D ()= . For g>=1 then (14) becomes (4). If perform

substitution -~ 7 in Eq. (14), obtained the relation (D; f (t))q2 . Easy observed that the

q,
fractional ¢>- Weyl like, ¢ - derivative is not a linear operator. Both derivatives, fractional
and g-derivative, have their physical meaning and the combination thereof (14) may useful.
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However, the main conclusion is that for the entropy (12) dominant influence does the
Tsallis entropy.

4. Entropy and its axiomatic characterization

For the Tsallis entropy exists various experimental verifications and applications!'*. The

Ubriaco”?, Shafee?’?® and entropies gives by Eq. (9) haven't so much experimentally

verifications. Still, assumed that entropy (12) discussed here may be a strong candidate in
describing complex system.

Below, presented the three-parameter generalization of the Shannon-Khinchin axioms in Abe
sense'?. Let A, be an n-dimensional simplex

A, ¢={p=(p1,--.,pn)p,-ZO,Zpl:l}- (15)

For Tsallis entropy, let p* € Ay™ and p® e A.P be two probability distributions for two
subsystems A4 and B respectively. Then the entropy of composite system is

Sy, [4.B]=S;, [A]+ S, [B]+(1-4)S;, [4] S, [B] 4] (16)
If A and B is independent, hence Sy, (B 4]= Sz, [B]. The Tsallis entropy is a pseudo-additive.
Three-parameter entropy (12) satisfies the following axioms.

(i) Continuity. The entropy s,  is continuous in A, . Previous restrictions are the result of

the basic principles of thermodynamics which will later prove.

(it) Maximality. For any neN then valid

S‘I:‘h»‘{v (p)SS‘IQ%s‘Iz (l”lj (17)
° n n
(iii) Expansibility. Consider
S‘]Z‘]l 92 (p’ 0) = S‘]?‘Ils‘h (p) (1 8)

(iv) Generalized Shannon Additivity. Consider

4 1_ 1 1 _1 92
Sq;ql,qz [A’B] = (Z_Zj [L 1q_%qq2 JST‘I‘II [A’B] +[q11q2_q ]ST% [A’B] ? (19)
1 5] a2

including Eq. (16).

If the above four requirements are hold, entropy (12) defined in a unique way. All of these
properties easy derived from characteristics of Tsallis entropy!'~*® and Eq. (13).

It is essential, however, to put the fundamental restrictions on values of the parameters ¢, g;

. . . . -
and ¢>. First, obvious that S, , [p] is a concave function because (s, ,, [p]}" is a concave

4591
function due (13) (the Tsallis entropy is a concave function for positive g). It is clear that
they are exact relations ggq,¢5' >0 and ¢,¢;' >0. Maximum of function (12) established for
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92

pi=q®00) _ If g—1 then pﬁexp[_q_ZJ. Second, by definition, s=s
9

bounded functions and, consequently, for ¢, >0, they have constrained values.

ig391,9, (P) must be

0.7

0.6F
0.5F
0.4
’ 0.3H
0.2} , i

01

Fig. 1. Plots of the S = Siga i function versus p for: a) g=1.6, ¢;=0.8, g>=0.6; b)
q=1.6,q,=0.55,9,=0.5; ¢) g=1.6, q;=0.303, g>=0.3.

The functions s =s, (p) which illustrate in Fig. 1, are typical positive concave functions.

19;91,9>

If considered the continuum case n— W >1, then Eq. (17) produced the relation

For the Eq. (20) can be concluded that for 0 <g <1 and 0 <gq; /g>< lor ¢ > 1 and q; /q:< 1,

4.4, 18 @ nondecreasing concave function of W which regular diverges ( “as a power law”)

if W — oo (see Fig. 2) as similar function for Tsallis entropy if ¢ <1 . In opposite case, for 0

<g<land 0<gq;/gx<x1lorg>1andqq; /g2< 1, S have a horizontal asimptote, as

939192
similar function for Tsallis entropy if ¢ > 1 (see Fig. 2). The concavity of the entropic
function illustrated through a set of plots shown above in Fig. 1. The aforementioned
conclusions will be used in the next section.
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Fig. 2. Plots of the function S, , [I/W]versus W for: a) g=1.6, q;=0.8, q-=0.6; b) ¢=1.6,

9:91>92

q1=0.55, g=0.5; ¢) g=1.6, q;=0.303, ¢-=0.3.

In Fig. 2, presented plots of S[1/W] for some values of ¢, g1, g2 (the generalized pdf). Clearly
in the limit ¢,q7, g2 — 1 the Boltzmann relation S = /n W is recovered.

5. Thermodynamic properties

The study of the stability properties of entropy functions is one of the important issues that
need to pay attention to many works. In the framework of the above, Lesche, in a pioneering
articles®!*2, proposed a criterion to study the stability of the Rénya entropy function and BG
entropy. For this criterion the motivation can be formulated as follows. The basic motive for
existence of this type of stability is to check whether existence of quantitative sensitivity to
changes when the probability assignments p on a set of n microstates is perturbed by an
infinitesimal amount Jp (i.e. experimental robustness). To some generalizations of the
Shannon entropy, this criteria has already been applied*!*>=¢. For Tsallis entropy is shown
that Leshe stable’’and the same holds for S, . [p]due to Eq. (13). Such is the entropy of the

q:91-92
given in Eq. (9)*°. In the case of thermodynamic stability, features consideration is different.

Condition in thermodynamic stability of system in the BG formalism, as is well known, is
2
equivalent to the concavity of the entropy: 2E—§ <0, E is the internal energy of the ensemble

per constituent. It should be noted that in the case of a non-additive entropies, the property of
concavity does not imply thermodynamic stability*°.

The Tsallis entropy is the thermodynamic stable for 0 < ¢ < 1°%, until entropy functions given
by Eq. (9) are stable in this way for 0 < g; < 1 and g2 > log>q; or g; > 0 and g2 <log> q; .

Generally considered, the Tsallis statistics, by investigating the second law of
thermodynamics in the context of kinetic theory, has been studied in the classical®’, the
relativistic*’ , and also in the quantum-mechanical regimes*'. Another study discussed for the
generalized relative entropy the convexity property in the quantum regime*?, leading for the
Tsallis entropy to the constraint 0 < g < 2. Putting together results for third law of
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thermodynamics reported in'* ¢ > 1, may conclude that the Tsallis entropy Sz, is compatible
with all the laws of thermodynamics only for ¢ in the range 1 < ¢ <2.

Entropy S,., .. [p]therefore compatible with all the laws of thermodynamics, due to (13), if

léqqlq;SZ or ISqlq;SZ.

Then, for 0 <g <1 and 0 <ggq;/g>< lor g > 1 and g; /q>< 1, concluding relations are

05<q<1, L1
9, 4 (213)

1<q£2,Z—:=1 (21b)

and ¢g> < 2. Relations (21a) and (21b) represents some of thé smailPtesults of this paper. In the
cases if for 0 <g <1and 0 <gq;/q< lor ¢ > 1 and qq; /g:< 1, results are ¢,¢;' =1 and ¢ = 1.
Previously mentioned inequalities represent physical limitations to the entropy function given
in Eq. (9) and Ref.26. If ¢q,¢;' =1 or ¢,¢5' =1then presents a two-parameter

Tsallis like entropies.

Based on the statistical-thermodynamic principles, the probability distributions can be
obtained by maximizing the corresponding entropy function s,., , [p](see Refs. 7, 26 for

more details), under the constraints 2; p; = 1 and 2; p; & = E (ei is the i-th state energy),
subject to constraint equation

Ly o =Ssaa [p]+a(l —ZpiJ+ﬂ(E—Zgipij (22)

where a and S are the Lagrange multipliers associated with the normalization of the pdf’s p;

. . oL, )
and the conservation of energy, such that setting % =0, leads to the equation
Pj

¢q;‘h»‘]z '(p,)=a+ﬂg,. (23)

with the solution ¢,,, . (p;)=(cr+ B&)p; +C, where C is the constant of integration. Hence gets

relations for the pdf’s

Pi =V, ‘q;l (ﬁ(gi _A)) (24)
in accordance with the definition
Voo ()= F ) ©3)

Function A=-a/f called the Helmholtz free energy. For Eq. (24) assumed that the function
can be inverted. Generally, do not have a closed form for p; solution for arbitrary ¢, ¢; and g>.
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But one should be able to obtain the pi for given ¢, g; and g. either numerically or
analytically.

0.6

pi

0.4

0.2

0
10

Fig. 3. Plots of the unnormalized pdf p; of the quantity O=a+ B¢ >0 for: a) g=1.6, ¢;=0.8,
q2=0.6; b) g=1.6, ¢;=0.55, ¢>=0.5; c) g=1.6, ¢;=0.303, ¢>=0.3.

In Fig. 3 presents, for some values of ¢, g;and g2 numerically determined plots of relation
(23) using the variable O=a+ B¢;.In all figures the specific values of ¢, g; and ¢> should

come from real physical systems.
5. Conclusions

This paper presented a generalizations of the concept of entropy inspired in the properties
on the power functions, FC and g-calculus. Within context of new calculus, defined a new
entropy functions. This new entropies is concave, positive definite, non-additive, for given set
of values of three parameters satisfies generalization of the Shannon-Khinchin axioms,
stability criteria and the second and third law of thermodynamics. In the description of its
properties dominate characteristics on the Tsallis entropy.

The relationship between fractional derivatives and entropy functions are only recently being
considered. In the framework of the above are particularly interesting other fractional or
different modification of Jackson g-derivative except one described in Ref. 19 or this article.
Accordingly, it is very important to mention that Makhaldiani* presents his version of the
fractional g-derivative

(D) £ ()= ((1=a)1) [f<r>+z<—1>" ala-l).{a-ntl)

nxl1 n'

fla'x)|  (26)

in the context of algebra-analytic quantization and field theory. The fractional derivative
defined by Eq. (26) is a very different from those introduced by (14). The Makhaldiani
fractional g-derivative, as opposed to the operator (14), is, by definition, linear operator. His
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action on the functions, although he probably represents the better candidate for new entropy,
however, is more complicated.

Towards this end, establishing a possible connection between these two operators, including
applicability to the description of the concept of entropy of the last defined operator (26) or
similar, could be the subject of future research.
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